Metamath Proof Explorer


Theorem noxpordse

Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noxpord.1 R = a b | a L b R b
noxpord.2 S = x y | x No × No y No × No 1 st x R 1 st y 1 st x = 1 st y 2 nd x R 2 nd y 2 nd x = 2 nd y x y
Assertion noxpordse S Se No × No

Proof

Step Hyp Ref Expression
1 noxpord.1 R = a b | a L b R b
2 noxpord.2 S = x y | x No × No y No × No 1 st x R 1 st y 1 st x = 1 st y 2 nd x R 2 nd y 2 nd x = 2 nd y x y
3 1 lrrecse R Se No
4 3 a1i R Se No
5 2 4 4 sexp2 S Se No × No
6 5 mptru S Se No × No