Metamath Proof Explorer


Theorem noxpordse

Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noxpord.1 No typesetting found for |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
noxpord.2 S=xy|xNo×NoyNo×No1stxR1sty1stx=1sty2ndxR2ndy2ndx=2ndyxy
Assertion noxpordse SSeNo×No

Proof

Step Hyp Ref Expression
1 noxpord.1 Could not format R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } : No typesetting found for |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
2 noxpord.2 S=xy|xNo×NoyNo×No1stxR1sty1stx=1sty2ndxR2ndy2ndx=2ndyxy
3 1 lrrecse RSeNo
4 3 a1i RSeNo
5 2 4 4 sexp2 SSeNo×No
6 5 mptru SSeNo×No