Metamath Proof Explorer


Theorem nsgid

Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis nsgid.z B=BaseG
Assertion nsgid GGrpBNrmSGrpG

Proof

Step Hyp Ref Expression
1 nsgid.z B=BaseG
2 1 subgid GGrpBSubGrpG
3 simp1 GGrpxByBGGrp
4 eqid +G=+G
5 1 4 grpcl GGrpxByBx+GyB
6 simp2 GGrpxByBxB
7 eqid -G=-G
8 1 7 grpsubcl GGrpx+GyBxBx+Gy-GxB
9 3 5 6 8 syl3anc GGrpxByBx+Gy-GxB
10 9 3expb GGrpxByBx+Gy-GxB
11 10 ralrimivva GGrpxByBx+Gy-GxB
12 1 4 7 isnsg3 BNrmSGrpGBSubGrpGxByBx+Gy-GxB
13 2 11 12 sylanbrc GGrpBNrmSGrpG