Metamath Proof Explorer


Theorem nsmndex1

Description: The base set B of the constructed monoid S is not a submonoid of the monoid M of endofunctions on set NN0 , although M e. Mnd and S e. Mnd and B C_ ( BaseM ) hold. (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
smndex1mgm.b B=In0..^NGn
smndex1mgm.s S=M𝑠B
Assertion nsmndex1 BSubMndM

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 smndex1mgm.b B=In0..^NGn
6 smndex1mgm.s S=M𝑠B
7 1 2 3 4 5 6 smndex1n0mnd 0MB
8 7 neli ¬0MB
9 8 intnan ¬BBaseM0MB
10 9 intnan ¬MMndM𝑠BMndBBaseM0MB
11 eqid BaseM=BaseM
12 eqid 0M=0M
13 11 12 issubmndb BSubMndMMMndM𝑠BMndBBaseM0MB
14 10 13 mtbir ¬BSubMndM
15 14 nelir BSubMndM