Metamath Proof Explorer


Theorem nssdmovg

Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017)

Ref Expression
Assertion nssdmovg domFR×S¬ARBSAFB=

Proof

Step Hyp Ref Expression
1 df-ov AFB=FAB
2 ssel2 domFR×SABdomFABR×S
3 opelxp ABR×SARBS
4 2 3 sylib domFR×SABdomFARBS
5 4 stoic1a domFR×S¬ARBS¬ABdomF
6 ndmfv ¬ABdomFFAB=
7 5 6 syl domFR×S¬ARBSFAB=
8 1 7 eqtrid domFR×S¬ARBSAFB=