Metamath Proof Explorer


Theorem numclwwlkovh

Description: Value of operation H , mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in Huneke p. 2. Definition of ClWWalksNOn resolved. (Contributed by Alexander van der Vekens, 26-Aug-2018) (Revised by AV, 30-May-2021) (Revised by AV, 1-May-2022)

Ref Expression
Hypothesis numclwwlkovh.h H = v V , n 2 w v ClWWalksNOn G n | w n 2 v
Assertion numclwwlkovh X V N 2 X H N = w N ClWWalksN G | w 0 = X w N 2 w 0

Proof

Step Hyp Ref Expression
1 numclwwlkovh.h H = v V , n 2 w v ClWWalksNOn G n | w n 2 v
2 1 numclwwlkovh0 X V N 2 X H N = w X ClWWalksNOn G N | w N 2 X
3 isclwwlknon w X ClWWalksNOn G N w N ClWWalksN G w 0 = X
4 3 anbi1i w X ClWWalksNOn G N w N 2 X w N ClWWalksN G w 0 = X w N 2 X
5 simpll w N ClWWalksN G w 0 = X w N 2 X w N ClWWalksN G
6 simplr w N ClWWalksN G w 0 = X w N 2 X w 0 = X
7 neeq2 X = w 0 w N 2 X w N 2 w 0
8 7 eqcoms w 0 = X w N 2 X w N 2 w 0
9 8 adantl w N ClWWalksN G w 0 = X w N 2 X w N 2 w 0
10 9 biimpa w N ClWWalksN G w 0 = X w N 2 X w N 2 w 0
11 6 10 jca w N ClWWalksN G w 0 = X w N 2 X w 0 = X w N 2 w 0
12 5 11 jca w N ClWWalksN G w 0 = X w N 2 X w N ClWWalksN G w 0 = X w N 2 w 0
13 simpl w 0 = X w N 2 w 0 w 0 = X
14 13 anim2i w N ClWWalksN G w 0 = X w N 2 w 0 w N ClWWalksN G w 0 = X
15 neeq2 w 0 = X w N 2 w 0 w N 2 X
16 15 biimpa w 0 = X w N 2 w 0 w N 2 X
17 16 adantl w N ClWWalksN G w 0 = X w N 2 w 0 w N 2 X
18 14 17 jca w N ClWWalksN G w 0 = X w N 2 w 0 w N ClWWalksN G w 0 = X w N 2 X
19 12 18 impbii w N ClWWalksN G w 0 = X w N 2 X w N ClWWalksN G w 0 = X w N 2 w 0
20 4 19 bitri w X ClWWalksNOn G N w N 2 X w N ClWWalksN G w 0 = X w N 2 w 0
21 20 rabbia2 w X ClWWalksNOn G N | w N 2 X = w N ClWWalksN G | w 0 = X w N 2 w 0
22 2 21 eqtrdi X V N 2 X H N = w N ClWWalksN G | w 0 = X w N 2 w 0