Metamath Proof Explorer


Theorem numthcor

Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion numthcor AVxOnAx

Proof

Step Hyp Ref Expression
1 breq1 y=AyxAx
2 1 rexbidv y=AxOnyxxOnAx
3 vpwex 𝒫yV
4 3 numth2 xOnx𝒫y
5 vex yV
6 5 canth2 y𝒫y
7 ensym x𝒫y𝒫yx
8 sdomentr y𝒫y𝒫yxyx
9 6 7 8 sylancr x𝒫yyx
10 9 reximi xOnx𝒫yxOnyx
11 4 10 ax-mp xOnyx
12 2 11 vtoclg AVxOnAx