Metamath Proof Explorer


Theorem nvdi

Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvdi.1 X=BaseSetU
nvdi.2 G=+vU
nvdi.4 S=𝑠OLDU
Assertion nvdi UNrmCVecABXCXASBGC=ASBGASC

Proof

Step Hyp Ref Expression
1 nvdi.1 X=BaseSetU
2 nvdi.2 G=+vU
3 nvdi.4 S=𝑠OLDU
4 eqid 1stU=1stU
5 4 nvvc UNrmCVec1stUCVecOLD
6 2 vafval G=1st1stU
7 3 smfval S=2nd1stU
8 1 2 bafval X=ranG
9 6 7 8 vcdi 1stUCVecOLDABXCXASBGC=ASBGASC
10 5 9 sylan UNrmCVecABXCXASBGC=ASBGASC