Metamath Proof Explorer


Theorem nvgf

Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvgf.1 X=BaseSetU
nvgf.2 G=+vU
Assertion nvgf UNrmCVecG:X×XX

Proof

Step Hyp Ref Expression
1 nvgf.1 X=BaseSetU
2 nvgf.2 G=+vU
3 2 nvgrp UNrmCVecGGrpOp
4 1 2 bafval X=ranG
5 4 grpofo GGrpOpG:X×XontoX
6 fof G:X×XontoXG:X×XX
7 3 5 6 3syl UNrmCVecG:X×XX