Metamath Proof Explorer


Theorem nvmtri

Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmtri.1 X=BaseSetU
nvmtri.3 M=-vU
nvmtri.6 N=normCVU
Assertion nvmtri UNrmCVecAXBXNAMBNA+NB

Proof

Step Hyp Ref Expression
1 nvmtri.1 X=BaseSetU
2 nvmtri.3 M=-vU
3 nvmtri.6 N=normCVU
4 neg1cn 1
5 eqid 𝑠OLDU=𝑠OLDU
6 1 5 nvscl UNrmCVec1BX-1𝑠OLDUBX
7 4 6 mp3an2 UNrmCVecBX-1𝑠OLDUBX
8 7 3adant2 UNrmCVecAXBX-1𝑠OLDUBX
9 eqid +vU=+vU
10 1 9 3 nvtri UNrmCVecAX-1𝑠OLDUBXNA+vU-1𝑠OLDUBNA+N-1𝑠OLDUB
11 8 10 syld3an3 UNrmCVecAXBXNA+vU-1𝑠OLDUBNA+N-1𝑠OLDUB
12 1 9 5 2 nvmval UNrmCVecAXBXAMB=A+vU-1𝑠OLDUB
13 12 fveq2d UNrmCVecAXBXNAMB=NA+vU-1𝑠OLDUB
14 1 5 3 nvs UNrmCVec1BXN-1𝑠OLDUB=1NB
15 4 14 mp3an2 UNrmCVecBXN-1𝑠OLDUB=1NB
16 ax-1cn 1
17 16 absnegi 1=1
18 abs1 1=1
19 17 18 eqtri 1=1
20 19 oveq1i 1NB=1NB
21 1 3 nvcl UNrmCVecBXNB
22 21 recnd UNrmCVecBXNB
23 22 mullidd UNrmCVecBX1NB=NB
24 20 23 eqtrid UNrmCVecBX1NB=NB
25 15 24 eqtr2d UNrmCVecBXNB=N-1𝑠OLDUB
26 25 3adant2 UNrmCVecAXBXNB=N-1𝑠OLDUB
27 26 oveq2d UNrmCVecAXBXNA+NB=NA+N-1𝑠OLDUB
28 11 13 27 3brtr4d UNrmCVecAXBXNAMBNA+NB