Metamath Proof Explorer


Theorem nvzcl

Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvzcl.1 X=BaseSetU
nvzcl.6 Z=0vecU
Assertion nvzcl UNrmCVecZX

Proof

Step Hyp Ref Expression
1 nvzcl.1 X=BaseSetU
2 nvzcl.6 Z=0vecU
3 eqid +vU=+vU
4 3 2 0vfval UNrmCVecZ=GId+vU
5 3 nvgrp UNrmCVec+vUGrpOp
6 1 3 bafval X=ran+vU
7 eqid GId+vU=GId+vU
8 6 7 grpoidcl +vUGrpOpGId+vUX
9 5 8 syl UNrmCVecGId+vUX
10 4 9 eqeltrd UNrmCVecZX