Metamath Proof Explorer


Theorem oa0r

Description: Ordinal addition with zero. Proposition 8.3 of TakeutiZaring p. 57. Lemma 2.14 of Schloeder p. 5. (Contributed by NM, 5-May-1995)

Ref Expression
Assertion oa0r AOn+𝑜A=A

Proof

Step Hyp Ref Expression
1 oveq2 x=+𝑜x=+𝑜
2 id x=x=
3 1 2 eqeq12d x=+𝑜x=x+𝑜=
4 oveq2 x=y+𝑜x=+𝑜y
5 id x=yx=y
6 4 5 eqeq12d x=y+𝑜x=x+𝑜y=y
7 oveq2 x=sucy+𝑜x=+𝑜sucy
8 id x=sucyx=sucy
9 7 8 eqeq12d x=sucy+𝑜x=x+𝑜sucy=sucy
10 oveq2 x=A+𝑜x=+𝑜A
11 id x=Ax=A
12 10 11 eqeq12d x=A+𝑜x=x+𝑜A=A
13 0elon On
14 oa0 On+𝑜=
15 13 14 ax-mp +𝑜=
16 oasuc OnyOn+𝑜sucy=suc+𝑜y
17 13 16 mpan yOn+𝑜sucy=suc+𝑜y
18 suceq +𝑜y=ysuc+𝑜y=sucy
19 17 18 sylan9eq yOn+𝑜y=y+𝑜sucy=sucy
20 19 ex yOn+𝑜y=y+𝑜sucy=sucy
21 iuneq2 yx+𝑜y=yyx+𝑜y=yxy
22 uniiun x=yxy
23 21 22 eqtr4di yx+𝑜y=yyx+𝑜y=x
24 vex xV
25 oalim OnxVLimx+𝑜x=yx+𝑜y
26 13 25 mpan xVLimx+𝑜x=yx+𝑜y
27 24 26 mpan Limx+𝑜x=yx+𝑜y
28 limuni Limxx=x
29 27 28 eqeq12d Limx+𝑜x=xyx+𝑜y=x
30 23 29 imbitrrid Limxyx+𝑜y=y+𝑜x=x
31 3 6 9 12 15 20 30 tfinds AOn+𝑜A=A