Description: Ordinal addition with zero. Proposition 8.3 of TakeutiZaring p. 57. Lemma 2.14 of Schloeder p. 5. (Contributed by NM, 5-May-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | oa0r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | id | |
|
3 | 1 2 | eqeq12d | |
4 | oveq2 | |
|
5 | id | |
|
6 | 4 5 | eqeq12d | |
7 | oveq2 | |
|
8 | id | |
|
9 | 7 8 | eqeq12d | |
10 | oveq2 | |
|
11 | id | |
|
12 | 10 11 | eqeq12d | |
13 | 0elon | |
|
14 | oa0 | |
|
15 | 13 14 | ax-mp | |
16 | oasuc | |
|
17 | 13 16 | mpan | |
18 | suceq | |
|
19 | 17 18 | sylan9eq | |
20 | 19 | ex | |
21 | iuneq2 | |
|
22 | uniiun | |
|
23 | 21 22 | eqtr4di | |
24 | vex | |
|
25 | oalim | |
|
26 | 13 25 | mpan | |
27 | 24 26 | mpan | |
28 | limuni | |
|
29 | 27 28 | eqeq12d | |
30 | 23 29 | imbitrrid | |
31 | 3 6 9 12 15 20 30 | tfinds | |