Metamath Proof Explorer


Theorem occon

Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion occon ABABBA

Proof

Step Hyp Ref Expression
1 ssralv AByBxihy=0yAxihy=0
2 1 adantr ABxyBxihy=0yAxihy=0
3 2 ss2rabdv ABx|yBxihy=0x|yAxihy=0
4 3 adantl ABABx|yBxihy=0x|yAxihy=0
5 ocval BB=x|yBxihy=0
6 5 ad2antlr ABABB=x|yBxihy=0
7 ocval AA=x|yAxihy=0
8 7 ad2antrr ABABA=x|yAxihy=0
9 4 6 8 3sstr4d ABABBA
10 9 ex ABABBA