Metamath Proof Explorer


Theorem ocv1

Description: The orthocomplement of the base set. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvz.v V=BaseW
ocvz.o ˙=ocvW
ocvz.z 0˙=0W
Assertion ocv1 WPreHil˙V=0˙

Proof

Step Hyp Ref Expression
1 ocvz.v V=BaseW
2 ocvz.o ˙=ocvW
3 ocvz.z 0˙=0W
4 1 2 ocvss ˙VV
5 sseqin2 ˙VVV˙V=˙V
6 4 5 mpbi V˙V=˙V
7 phllmod WPreHilWLMod
8 eqid LSubSpW=LSubSpW
9 1 8 lss1 WLModVLSubSpW
10 7 9 syl WPreHilVLSubSpW
11 2 8 3 ocvin WPreHilVLSubSpWV˙V=0˙
12 10 11 mpdan WPreHilV˙V=0˙
13 6 12 eqtr3id WPreHil˙V=0˙