Metamath Proof Explorer


Theorem oddflALTV

Description: Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 18-Jun-2020)

Ref Expression
Assertion oddflALTV KOddK=2K2+1

Proof

Step Hyp Ref Expression
1 zofldiv2ALTV KOddK2=K12
2 1 oveq2d KOdd2K2=2K12
3 2 oveq1d KOdd2K2+1=2K12+1
4 oddz KOddK
5 peano2zm KK1
6 5 zcnd KK1
7 4 6 syl KOddK1
8 2cnd KOdd2
9 2ne0 20
10 9 a1i KOdd20
11 7 8 10 divcan2d KOdd2K12=K1
12 11 oveq1d KOdd2K12+1=K-1+1
13 4 zcnd KOddK
14 npcan1 KK-1+1=K
15 13 14 syl KOddK-1+1=K
16 3 12 15 3eqtrrd KOddK=2K2+1