Metamath Proof Explorer


Theorem odubas

Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses oduval.d D=ODualO
odubas.b B=BaseO
Assertion odubas B=BaseD

Proof

Step Hyp Ref Expression
1 oduval.d D=ODualO
2 odubas.b B=BaseO
3 baseid Base=SlotBasendx
4 plendxnbasendx ndxBasendx
5 4 necomi Basendxndx
6 3 5 setsnid BaseO=BaseOsSetndxO-1
7 eqid O=O
8 1 7 oduval D=OsSetndxO-1
9 8 fveq2i BaseD=BaseOsSetndxO-1
10 6 2 9 3eqtr4i B=BaseD