Metamath Proof Explorer


Theorem odubasOLD

Description: Obsolete proof of odubas as of 12-Nov-2024. Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses oduval.d D=ODualO
odubas.b B=BaseO
Assertion odubasOLD B=BaseD

Proof

Step Hyp Ref Expression
1 oduval.d D=ODualO
2 odubas.b B=BaseO
3 baseid Base=SlotBasendx
4 1re 1
5 1lt10 1<10
6 4 5 ltneii 110
7 basendx Basendx=1
8 plendx ndx=10
9 7 8 neeq12i Basendxndx110
10 6 9 mpbir Basendxndx
11 3 10 setsnid BaseO=BaseOsSetndxO-1
12 eqid O=O
13 1 12 oduval D=OsSetndxO-1
14 13 fveq2i BaseD=BaseOsSetndxO-1
15 11 2 14 3eqtr4i B=BaseD