Metamath Proof Explorer


Theorem odujoin

Description: Joins in a dual order are meets in the original. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduglb.d D=ODualO
odujoin.m ˙=meetO
Assertion odujoin ˙=joinD

Proof

Step Hyp Ref Expression
1 oduglb.d D=ODualO
2 odujoin.m ˙=meetO
3 eqid glbO=glbO
4 1 3 odulub OVglbO=lubD
5 4 breqd OVabglbOcablubDc
6 5 oprabbidv OVabc|abglbOc=abc|ablubDc
7 eqid meetO=meetO
8 3 7 meetfval OVmeetO=abc|abglbOc
9 1 fvexi DV
10 eqid lubD=lubD
11 eqid joinD=joinD
12 10 11 joinfval DVjoinD=abc|ablubDc
13 9 12 mp1i OVjoinD=abc|ablubDc
14 6 8 13 3eqtr4d OVmeetO=joinD
15 fvprc ¬OVmeetO=
16 fvprc ¬OVODualO=
17 1 16 eqtrid ¬OVD=
18 17 fveq2d ¬OVjoinD=join
19 join0 join=
20 18 19 eqtrdi ¬OVjoinD=
21 15 20 eqtr4d ¬OVmeetO=joinD
22 14 21 pm2.61i meetO=joinD
23 2 22 eqtri ˙=joinD