Metamath Proof Explorer


Theorem odulub

Description: Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduglb.d D = ODual O
odulub.l L = glb O
Assertion odulub O V L = lub D

Proof

Step Hyp Ref Expression
1 oduglb.d D = ODual O
2 odulub.l L = glb O
3 vex c V
4 vex b V
5 3 4 brcnv c O -1 b b O c
6 5 ralbii c a c O -1 b c a b O c
7 vex d V
8 3 7 brcnv c O -1 d d O c
9 8 ralbii c a c O -1 d c a d O c
10 4 7 brcnv b O -1 d d O b
11 9 10 imbi12i c a c O -1 d b O -1 d c a d O c d O b
12 11 ralbii d Base O c a c O -1 d b O -1 d d Base O c a d O c d O b
13 6 12 anbi12i c a c O -1 b d Base O c a c O -1 d b O -1 d c a b O c d Base O c a d O c d O b
14 13 a1i b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d c a b O c d Base O c a d O c d O b
15 14 riotabiia ι b Base O | c a c O -1 b d Base O c a c O -1 d b O -1 d = ι b Base O | c a b O c d Base O c a d O c d O b
16 15 mpteq2i a 𝒫 Base O ι b Base O | c a c O -1 b d Base O c a c O -1 d b O -1 d = a 𝒫 Base O ι b Base O | c a b O c d Base O c a d O c d O b
17 13 reubii ∃! b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d ∃! b Base O c a b O c d Base O c a d O c d O b
18 17 abbii a | ∃! b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d = a | ∃! b Base O c a b O c d Base O c a d O c d O b
19 16 18 reseq12i a 𝒫 Base O ι b Base O | c a c O -1 b d Base O c a c O -1 d b O -1 d a | ∃! b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d = a 𝒫 Base O ι b Base O | c a b O c d Base O c a d O c d O b a | ∃! b Base O c a b O c d Base O c a d O c d O b
20 19 eqcomi a 𝒫 Base O ι b Base O | c a b O c d Base O c a d O c d O b a | ∃! b Base O c a b O c d Base O c a d O c d O b = a 𝒫 Base O ι b Base O | c a c O -1 b d Base O c a c O -1 d b O -1 d a | ∃! b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d
21 eqid Base O = Base O
22 eqid O = O
23 eqid glb O = glb O
24 biid c a b O c d Base O c a d O c d O b c a b O c d Base O c a d O c d O b
25 id O V O V
26 21 22 23 24 25 glbfval O V glb O = a 𝒫 Base O ι b Base O | c a b O c d Base O c a d O c d O b a | ∃! b Base O c a b O c d Base O c a d O c d O b
27 1 fvexi D V
28 1 21 odubas Base O = Base D
29 1 22 oduleval O -1 = D
30 eqid lub D = lub D
31 biid c a c O -1 b d Base O c a c O -1 d b O -1 d c a c O -1 b d Base O c a c O -1 d b O -1 d
32 id D V D V
33 28 29 30 31 32 lubfval D V lub D = a 𝒫 Base O ι b Base O | c a c O -1 b d Base O c a c O -1 d b O -1 d a | ∃! b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d
34 27 33 mp1i O V lub D = a 𝒫 Base O ι b Base O | c a c O -1 b d Base O c a c O -1 d b O -1 d a | ∃! b Base O c a c O -1 b d Base O c a c O -1 d b O -1 d
35 20 26 34 3eqtr4a O V glb O = lub D
36 2 35 syl5eq O V L = lub D