Metamath Proof Explorer


Theorem odulub

Description: Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduglb.d D=ODualO
odulub.l L=glbO
Assertion odulub OVL=lubD

Proof

Step Hyp Ref Expression
1 oduglb.d D=ODualO
2 odulub.l L=glbO
3 vex cV
4 vex bV
5 3 4 brcnv cO-1bbOc
6 5 ralbii cacO-1bcabOc
7 vex dV
8 3 7 brcnv cO-1ddOc
9 8 ralbii cacO-1dcadOc
10 4 7 brcnv bO-1ddOb
11 9 10 imbi12i cacO-1dbO-1dcadOcdOb
12 11 ralbii dBaseOcacO-1dbO-1ddBaseOcadOcdOb
13 6 12 anbi12i cacO-1bdBaseOcacO-1dbO-1dcabOcdBaseOcadOcdOb
14 13 a1i bBaseOcacO-1bdBaseOcacO-1dbO-1dcabOcdBaseOcadOcdOb
15 14 riotabiia ιbBaseO|cacO-1bdBaseOcacO-1dbO-1d=ιbBaseO|cabOcdBaseOcadOcdOb
16 15 mpteq2i a𝒫BaseOιbBaseO|cacO-1bdBaseOcacO-1dbO-1d=a𝒫BaseOιbBaseO|cabOcdBaseOcadOcdOb
17 13 reubii ∃!bBaseOcacO-1bdBaseOcacO-1dbO-1d∃!bBaseOcabOcdBaseOcadOcdOb
18 17 abbii a|∃!bBaseOcacO-1bdBaseOcacO-1dbO-1d=a|∃!bBaseOcabOcdBaseOcadOcdOb
19 16 18 reseq12i a𝒫BaseOιbBaseO|cacO-1bdBaseOcacO-1dbO-1da|∃!bBaseOcacO-1bdBaseOcacO-1dbO-1d=a𝒫BaseOιbBaseO|cabOcdBaseOcadOcdOba|∃!bBaseOcabOcdBaseOcadOcdOb
20 19 eqcomi a𝒫BaseOιbBaseO|cabOcdBaseOcadOcdOba|∃!bBaseOcabOcdBaseOcadOcdOb=a𝒫BaseOιbBaseO|cacO-1bdBaseOcacO-1dbO-1da|∃!bBaseOcacO-1bdBaseOcacO-1dbO-1d
21 eqid BaseO=BaseO
22 eqid O=O
23 eqid glbO=glbO
24 biid cabOcdBaseOcadOcdObcabOcdBaseOcadOcdOb
25 id OVOV
26 21 22 23 24 25 glbfval OVglbO=a𝒫BaseOιbBaseO|cabOcdBaseOcadOcdOba|∃!bBaseOcabOcdBaseOcadOcdOb
27 1 fvexi DV
28 1 21 odubas BaseO=BaseD
29 1 22 oduleval O-1=D
30 eqid lubD=lubD
31 biid cacO-1bdBaseOcacO-1dbO-1dcacO-1bdBaseOcacO-1dbO-1d
32 id DVDV
33 28 29 30 31 32 lubfval DVlubD=a𝒫BaseOιbBaseO|cacO-1bdBaseOcacO-1dbO-1da|∃!bBaseOcacO-1bdBaseOcacO-1dbO-1d
34 27 33 mp1i OVlubD=a𝒫BaseOιbBaseO|cacO-1bdBaseOcacO-1dbO-1da|∃!bBaseOcacO-1bdBaseOcacO-1dbO-1d
35 20 26 34 3eqtr4a OVglbO=lubD
36 2 35 eqtrid OVL=lubD