Metamath Proof Explorer


Theorem oduposb

Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis odupos.d D=ODualO
Assertion oduposb OVOPosetDPoset

Proof

Step Hyp Ref Expression
1 odupos.d D=ODualO
2 1 odupos OPosetDPoset
3 eqid ODualD=ODualD
4 3 odupos DPosetODualDPoset
5 fvexd OVODualDV
6 id OVOV
7 eqid BaseO=BaseO
8 1 7 odubas BaseO=BaseD
9 3 8 odubas BaseO=BaseODualD
10 9 a1i OVBaseO=BaseODualD
11 eqidd OVBaseO=BaseO
12 eqid O=O
13 1 12 oduleval O-1=D
14 3 13 oduleval O-1-1=ODualD
15 14 eqcomi ODualD=O-1-1
16 15 breqi aODualDbaO-1-1b
17 vex aV
18 vex bV
19 17 18 brcnv aO-1-1bbO-1a
20 18 17 brcnv bO-1aaOb
21 16 19 20 3bitri aODualDbaOb
22 21 a1i OVaBaseObBaseOaODualDbaOb
23 5 6 10 11 22 pospropd OVODualDPosetOPoset
24 4 23 imbitrid OVDPosetOPoset
25 2 24 impbid2 OVOPosetDPoset