Metamath Proof Explorer


Theorem oelim

Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of TakeutiZaring p. 67. Definition 2.6 of Schloeder p. 4. (Contributed by NM, 1-Jan-2005) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oelim AOnBCLimBAA𝑜B=xBA𝑜x

Proof

Step Hyp Ref Expression
1 limelon BCLimBBOn
2 simpr BCLimBLimB
3 1 2 jca BCLimBBOnLimB
4 rdglim2a BOnLimBrecyVy𝑜A1𝑜B=xBrecyVy𝑜A1𝑜x
5 4 ad2antlr AOnBOnLimBArecyVy𝑜A1𝑜B=xBrecyVy𝑜A1𝑜x
6 oevn0 AOnBOnAA𝑜B=recyVy𝑜A1𝑜B
7 onelon BOnxBxOn
8 oevn0 AOnxOnAA𝑜x=recyVy𝑜A1𝑜x
9 7 8 sylanl2 AOnBOnxBAA𝑜x=recyVy𝑜A1𝑜x
10 9 exp42 AOnBOnxBAA𝑜x=recyVy𝑜A1𝑜x
11 10 com34 AOnBOnAxBA𝑜x=recyVy𝑜A1𝑜x
12 11 imp41 AOnBOnAxBA𝑜x=recyVy𝑜A1𝑜x
13 12 iuneq2dv AOnBOnAxBA𝑜x=xBrecyVy𝑜A1𝑜x
14 6 13 eqeq12d AOnBOnAA𝑜B=xBA𝑜xrecyVy𝑜A1𝑜B=xBrecyVy𝑜A1𝑜x
15 14 adantlrr AOnBOnLimBAA𝑜B=xBA𝑜xrecyVy𝑜A1𝑜B=xBrecyVy𝑜A1𝑜x
16 5 15 mpbird AOnBOnLimBAA𝑜B=xBA𝑜x
17 3 16 sylanl2 AOnBCLimBAA𝑜B=xBA𝑜x