Metamath Proof Explorer


Theorem ofcfn

Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 φFFnA
ofcfval.2 φAV
ofcfval.3 φCW
Assertion ofcfn φFfcRCFnA

Proof

Step Hyp Ref Expression
1 ofcfval.1 φFFnA
2 ofcfval.2 φAV
3 ofcfval.3 φCW
4 ovex FxRCV
5 eqid xAFxRC=xAFxRC
6 4 5 fnmpti xAFxRCFnA
7 eqidd φxAFx=Fx
8 1 2 3 7 ofcfval φFfcRC=xAFxRC
9 8 fneq1d φFfcRCFnAxAFxRCFnA
10 6 9 mpbiri φFfcRCFnA