Metamath Proof Explorer


Theorem ofcfn

Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval.1 φ F Fn A
ofcfval.2 φ A V
ofcfval.3 φ C W
Assertion ofcfn φ F fc R C Fn A

Proof

Step Hyp Ref Expression
1 ofcfval.1 φ F Fn A
2 ofcfval.2 φ A V
3 ofcfval.3 φ C W
4 ovex F x R C V
5 eqid x A F x R C = x A F x R C
6 4 5 fnmpti x A F x R C Fn A
7 eqidd φ x A F x = F x
8 1 2 3 7 ofcfval φ F fc R C = x A F x R C
9 8 fneq1d φ F fc R C Fn A x A F x R C Fn A
10 6 9 mpbiri φ F fc R C Fn A