Metamath Proof Explorer


Theorem offun

Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024)

Ref Expression
Hypotheses offun.1 φFFnA
offun.2 φGFnB
offun.3 φAV
offun.4 φBW
Assertion offun φFunFRfG

Proof

Step Hyp Ref Expression
1 offun.1 φFFnA
2 offun.2 φGFnB
3 offun.3 φAV
4 offun.4 φBW
5 eqid AB=AB
6 1 2 3 4 5 offn φFRfGFnAB
7 fnfun FRfGFnABFunFRfG
8 6 7 syl φFunFRfG