Metamath Proof Explorer


Theorem offvalfv

Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019)

Ref Expression
Hypotheses offvalfv.a φAV
offvalfv.f φFFnA
offvalfv.g φGFnA
Assertion offvalfv φFRfG=xAFxRGx

Proof

Step Hyp Ref Expression
1 offvalfv.a φAV
2 offvalfv.f φFFnA
3 offvalfv.g φGFnA
4 fnfvelrn FFnAxAFxranF
5 2 4 sylan φxAFxranF
6 fnfvelrn GFnAxAGxranG
7 3 6 sylan φxAGxranG
8 dffn5 FFnAF=xAFx
9 2 8 sylib φF=xAFx
10 dffn5 GFnAG=xAGx
11 3 10 sylib φG=xAGx
12 1 5 7 9 11 offval2 φFRfG=xAFxRGx