Metamath Proof Explorer


Theorem ofaddmndmap

Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019)

Ref Expression
Hypotheses ofaddmndmap.r R=BaseM
ofaddmndmap.p +˙=+M
Assertion ofaddmndmap MMndVYARVBRVA+˙fBRV

Proof

Step Hyp Ref Expression
1 ofaddmndmap.r R=BaseM
2 ofaddmndmap.p +˙=+M
3 simpl1 MMndVYARVBRVxRyRMMnd
4 simprl MMndVYARVBRVxRyRxR
5 simprr MMndVYARVBRVxRyRyR
6 1 2 mndcl MMndxRyRx+˙yR
7 3 4 5 6 syl3anc MMndVYARVBRVxRyRx+˙yR
8 elmapi ARVA:VR
9 8 adantr ARVBRVA:VR
10 9 3ad2ant3 MMndVYARVBRVA:VR
11 elmapi BRVB:VR
12 11 adantl ARVBRVB:VR
13 12 3ad2ant3 MMndVYARVBRVB:VR
14 simp2 MMndVYARVBRVVY
15 inidm VV=V
16 7 10 13 14 14 15 off MMndVYARVBRVA+˙fB:VR
17 1 fvexi RV
18 elmapg RVVYA+˙fBRVA+˙fB:VR
19 17 14 18 sylancr MMndVYARVBRVA+˙fBRVA+˙fB:VR
20 16 19 mpbird MMndVYARVBRVA+˙fBRV