Metamath Proof Explorer


Theorem ofldtos

Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion ofldtos FoFieldFToset

Proof

Step Hyp Ref Expression
1 isofld FoFieldFFieldFoRing
2 1 simprbi FoFieldFoRing
3 orngogrp FoRingFoGrp
4 isogrp FoGrpFGrpFoMnd
5 4 simprbi FoGrpFoMnd
6 2 3 5 3syl FoFieldFoMnd
7 omndtos FoMndFToset
8 6 7 syl FoFieldFToset