Metamath Proof Explorer


Theorem ofrn

Description: The range of the function operation. (Contributed by Thierry Arnoux, 8-Jan-2017)

Ref Expression
Hypotheses ofrn.1 φF:AB
ofrn.2 φG:AB
ofrn.3 φ+˙:B×BC
ofrn.4 φAV
Assertion ofrn φranF+˙fGC

Proof

Step Hyp Ref Expression
1 ofrn.1 φF:AB
2 ofrn.2 φG:AB
3 ofrn.3 φ+˙:B×BC
4 ofrn.4 φAV
5 3 fovcdmda φxByBx+˙yC
6 inidm AA=A
7 5 1 2 4 4 6 off φF+˙fG:AC
8 7 frnd φranF+˙fGC