Metamath Proof Explorer


Theorem oldf

Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion oldf Old : On 𝒫 No

Proof

Step Hyp Ref Expression
1 df-old Old = x On M x
2 imassrn M x ran M
3 madef M : On 𝒫 No
4 frn M : On 𝒫 No ran M 𝒫 No
5 3 4 ax-mp ran M 𝒫 No
6 2 5 sstri M x 𝒫 No
7 6 sseli y M x y 𝒫 No
8 7 elpwid y M x y No
9 8 rgen y M x y No
10 9 a1i x On y M x y No
11 ffun M : On 𝒫 No Fun M
12 3 11 ax-mp Fun M
13 vex x V
14 13 funimaex Fun M M x V
15 12 14 ax-mp M x V
16 15 uniex M x V
17 16 elpw M x 𝒫 No M x No
18 unissb M x No y M x y No
19 17 18 bitri M x 𝒫 No y M x y No
20 10 19 sylibr x On M x 𝒫 No
21 1 20 fmpti Old : On 𝒫 No