Metamath Proof Explorer


Theorem omexrcl

Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omexrcl.o φ O OutMeas
omexrcl.x X = dom O
omexrcl.a φ A X
Assertion omexrcl φ O A *

Proof

Step Hyp Ref Expression
1 omexrcl.o φ O OutMeas
2 omexrcl.x X = dom O
3 omexrcl.a φ A X
4 iccssxr 0 +∞ *
5 1 2 3 omecl φ O A 0 +∞
6 4 5 sselid φ O A *