Metamath Proof Explorer


Theorem omge1

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of Schloeder p. 8. See omword1 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge1 AOnBOnBAA𝑜B

Proof

Step Hyp Ref Expression
1 3simpa AOnBOnBAOnBOn
2 on0eln0 BOnBB
3 2 biimpar BOnBB
4 3 3adant1 AOnBOnBB
5 omword1 AOnBOnBAA𝑜B
6 1 4 5 syl2anc AOnBOnBAA𝑜B