Metamath Proof Explorer


Theorem omndmnd

Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Assertion omndmnd M oMnd M Mnd

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid + M = + M
3 eqid M = M
4 1 2 3 isomnd M oMnd M Mnd M Toset a Base M b Base M c Base M a M b a + M c M b + M c
5 4 simp1bi M oMnd M Mnd