Metamath Proof Explorer


Theorem omord2lim

Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omord2lim AOnALimCCVBCA𝑜BA𝑜C

Proof

Step Hyp Ref Expression
1 limord LimCOrdC
2 1 ad2antrl AOnALimCCVOrdC
3 ordelon OrdCBCBOn
4 2 3 sylan AOnALimCCVBCBOn
5 elex CVCV
6 1 5 anim12i LimCCVOrdCCV
7 6 ad2antlr AOnALimCCVBCOrdCCV
8 elon2 COnOrdCCV
9 7 8 sylibr AOnALimCCVBCCOn
10 simplll AOnALimCCVBCAOn
11 simpr AOnALimCCVBCBC
12 on0eln0 AOnAA
13 12 biimpar AOnAA
14 13 ad2antrr AOnALimCCVBCA
15 omord BOnCOnAOnBCAA𝑜BA𝑜C
16 15 biimpa BOnCOnAOnBCAA𝑜BA𝑜C
17 4 9 10 11 14 16 syl32anc AOnALimCCVBCA𝑜BA𝑜C
18 17 ex AOnALimCCVBCA𝑜BA𝑜C