Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | omord2lim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord | |
|
2 | 1 | ad2antrl | |
3 | ordelon | |
|
4 | 2 3 | sylan | |
5 | elex | |
|
6 | 1 5 | anim12i | |
7 | 6 | ad2antlr | |
8 | elon2 | |
|
9 | 7 8 | sylibr | |
10 | simplll | |
|
11 | simpr | |
|
12 | on0eln0 | |
|
13 | 12 | biimpar | |
14 | 13 | ad2antrr | |
15 | omord | |
|
16 | 15 | biimpa | |
17 | 4 9 10 11 14 16 | syl32anc | |
18 | 17 | ex | |