Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of Schloeder p. 8. (Contributed by NM, 21-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | omword1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |
|
2 | ordgt0ge1 | |
|
3 | 1 2 | syl | |
4 | 3 | adantl | |
5 | 1on | |
|
6 | omwordi | |
|
7 | 5 6 | mp3an1 | |
8 | 7 | ancoms | |
9 | om1 | |
|
10 | 9 | adantr | |
11 | 10 | sseq1d | |
12 | 8 11 | sylibd | |
13 | 4 12 | sylbid | |
14 | 13 | imp | |