Metamath Proof Explorer


Theorem omword1

Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of Schloeder p. 8. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion omword1 AOnBOnBAA𝑜B

Proof

Step Hyp Ref Expression
1 eloni BOnOrdB
2 ordgt0ge1 OrdBB1𝑜B
3 1 2 syl BOnB1𝑜B
4 3 adantl AOnBOnB1𝑜B
5 1on 1𝑜On
6 omwordi 1𝑜OnBOnAOn1𝑜BA𝑜1𝑜A𝑜B
7 5 6 mp3an1 BOnAOn1𝑜BA𝑜1𝑜A𝑜B
8 7 ancoms AOnBOn1𝑜BA𝑜1𝑜A𝑜B
9 om1 AOnA𝑜1𝑜=A
10 9 adantr AOnBOnA𝑜1𝑜=A
11 10 sseq1d AOnBOnA𝑜1𝑜A𝑜BAA𝑜B
12 8 11 sylibd AOnBOn1𝑜BAA𝑜B
13 4 12 sylbid AOnBOnBAA𝑜B
14 13 imp AOnBOnBAA𝑜B