Metamath Proof Explorer


Theorem on2recsfn

Description: Show that double recursion over ordinals yields a function over pairs of ordinals. (Contributed by Scott Fenton, 3-Sep-2024)

Ref Expression
Hypothesis on2recs.1 F=frecsxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnG
Assertion on2recsfn FFnOn×On

Proof

Step Hyp Ref Expression
1 on2recs.1 F=frecsxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnG
2 eqid xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy=xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy
3 onfr EFrOn
4 3 a1i EFrOn
5 2 4 4 frxp2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×On
6 5 mptru xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×On
7 epweon EWeOn
8 weso EWeOnEOrOn
9 sopo EOrOnEPoOn
10 7 8 9 mp2b EPoOn
11 10 a1i EPoOn
12 2 11 11 poxp2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×On
13 12 mptru xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×On
14 epse ESeOn
15 14 a1i ESeOn
16 2 15 15 sexp2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×On
17 16 mptru xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×On
18 1 fpr1 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×Onxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×Onxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×OnFFnOn×On
19 6 13 17 18 mp3an FFnOn×On