Step |
Hyp |
Ref |
Expression |
1 |
|
on2recs.1 |
⊢ 𝐹 = frecs ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } , ( On × On ) , 𝐺 ) |
2 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
3 |
|
onfr |
⊢ E Fr On |
4 |
3
|
a1i |
⊢ ( ⊤ → E Fr On ) |
5 |
2 4 4
|
frxp2 |
⊢ ( ⊤ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Fr ( On × On ) ) |
6 |
5
|
mptru |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Fr ( On × On ) |
7 |
|
epweon |
⊢ E We On |
8 |
|
weso |
⊢ ( E We On → E Or On ) |
9 |
|
sopo |
⊢ ( E Or On → E Po On ) |
10 |
7 8 9
|
mp2b |
⊢ E Po On |
11 |
10
|
a1i |
⊢ ( ⊤ → E Po On ) |
12 |
2 11 11
|
poxp2 |
⊢ ( ⊤ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Po ( On × On ) ) |
13 |
12
|
mptru |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Po ( On × On ) |
14 |
|
epse |
⊢ E Se On |
15 |
14
|
a1i |
⊢ ( ⊤ → E Se On ) |
16 |
2 15 15
|
sexp2 |
⊢ ( ⊤ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Se ( On × On ) ) |
17 |
16
|
mptru |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Se ( On × On ) |
18 |
1
|
fpr1 |
⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Fr ( On × On ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Po ( On × On ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ∧ ( ( ( 1st ‘ 𝑥 ) E ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) E ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } Se ( On × On ) ) → 𝐹 Fn ( On × On ) ) |
19 |
6 13 17 18
|
mp3an |
⊢ 𝐹 Fn ( On × On ) |