Step |
Hyp |
Ref |
Expression |
1 |
|
on2recs.1 |
|- F = frecs ( { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } , ( On X. On ) , G ) |
2 |
|
eqid |
|- { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
3 |
|
onfr |
|- _E Fr On |
4 |
3
|
a1i |
|- ( T. -> _E Fr On ) |
5 |
2 4 4
|
frxp2 |
|- ( T. -> { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Fr ( On X. On ) ) |
6 |
5
|
mptru |
|- { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Fr ( On X. On ) |
7 |
|
epweon |
|- _E We On |
8 |
|
weso |
|- ( _E We On -> _E Or On ) |
9 |
|
sopo |
|- ( _E Or On -> _E Po On ) |
10 |
7 8 9
|
mp2b |
|- _E Po On |
11 |
10
|
a1i |
|- ( T. -> _E Po On ) |
12 |
2 11 11
|
poxp2 |
|- ( T. -> { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Po ( On X. On ) ) |
13 |
12
|
mptru |
|- { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Po ( On X. On ) |
14 |
|
epse |
|- _E Se On |
15 |
14
|
a1i |
|- ( T. -> _E Se On ) |
16 |
2 15 15
|
sexp2 |
|- ( T. -> { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Se ( On X. On ) ) |
17 |
16
|
mptru |
|- { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Se ( On X. On ) |
18 |
1
|
fpr1 |
|- ( ( { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Fr ( On X. On ) /\ { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Po ( On X. On ) /\ { <. x , y >. | ( x e. ( On X. On ) /\ y e. ( On X. On ) /\ ( ( ( 1st ` x ) _E ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) _E ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } Se ( On X. On ) ) -> F Fn ( On X. On ) ) |
19 |
6 13 17 18
|
mp3an |
|- F Fn ( On X. On ) |