Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | on2recs.1 | |
|
Assertion | on2recsov | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on2recs.1 | |
|
2 | df-ov | |
|
3 | opelxp | |
|
4 | eqid | |
|
5 | onfr | |
|
6 | 5 | a1i | |
7 | 4 6 6 | frxp2 | |
8 | 7 | mptru | |
9 | epweon | |
|
10 | weso | |
|
11 | sopo | |
|
12 | 9 10 11 | mp2b | |
13 | 12 | a1i | |
14 | 4 13 13 | poxp2 | |
15 | 14 | mptru | |
16 | epse | |
|
17 | 16 | a1i | |
18 | 4 17 17 | sexp2 | |
19 | 18 | mptru | |
20 | 8 15 19 | 3pm3.2i | |
21 | 1 | fpr2 | |
22 | 20 21 | mpan | |
23 | 3 22 | sylbir | |
24 | 2 23 | eqtrid | |
25 | 4 | xpord2pred | |
26 | predon | |
|
27 | 26 | adantr | |
28 | 27 | uneq1d | |
29 | df-suc | |
|
30 | 28 29 | eqtr4di | |
31 | predon | |
|
32 | 31 | adantl | |
33 | 32 | uneq1d | |
34 | df-suc | |
|
35 | 33 34 | eqtr4di | |
36 | 30 35 | xpeq12d | |
37 | 36 | difeq1d | |
38 | 25 37 | eqtrd | |
39 | 38 | reseq2d | |
40 | 39 | oveq2d | |
41 | 24 40 | eqtrd | |