Metamath Proof Explorer


Theorem on2recsov

Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024)

Ref Expression
Hypothesis on2recs.1 F=frecsxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnG
Assertion on2recsov AOnBOnAFB=ABGFsucA×sucBAB

Proof

Step Hyp Ref Expression
1 on2recs.1 F=frecsxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnG
2 df-ov AFB=FAB
3 opelxp ABOn×OnAOnBOn
4 eqid xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy=xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxy
5 onfr EFrOn
6 5 a1i EFrOn
7 4 6 6 frxp2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×On
8 7 mptru xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×On
9 epweon EWeOn
10 weso EWeOnEOrOn
11 sopo EOrOnEPoOn
12 9 10 11 mp2b EPoOn
13 12 a1i EPoOn
14 4 13 13 poxp2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×On
15 14 mptru xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×On
16 epse ESeOn
17 16 a1i ESeOn
18 4 17 17 sexp2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×On
19 18 mptru xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×On
20 8 15 19 3pm3.2i xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×Onxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×Onxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×On
21 1 fpr2 xy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyFrOn×Onxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyPoOn×Onxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxySeOn×OnABOn×OnFAB=ABGFPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB
22 20 21 mpan ABOn×OnFAB=ABGFPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB
23 3 22 sylbir AOnBOnFAB=ABGFPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB
24 2 23 eqtrid AOnBOnAFB=ABGFPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB
25 4 xpord2pred AOnBOnPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB=PredEOnAA×PredEOnBBAB
26 predon AOnPredEOnA=A
27 26 adantr AOnBOnPredEOnA=A
28 27 uneq1d AOnBOnPredEOnAA=AA
29 df-suc sucA=AA
30 28 29 eqtr4di AOnBOnPredEOnAA=sucA
31 predon BOnPredEOnB=B
32 31 adantl AOnBOnPredEOnB=B
33 32 uneq1d AOnBOnPredEOnBB=BB
34 df-suc sucB=BB
35 33 34 eqtr4di AOnBOnPredEOnBB=sucB
36 30 35 xpeq12d AOnBOnPredEOnAA×PredEOnBB=sucA×sucB
37 36 difeq1d AOnBOnPredEOnAA×PredEOnBBAB=sucA×sucBAB
38 25 37 eqtrd AOnBOnPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB=sucA×sucBAB
39 38 reseq2d AOnBOnFPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB=FsucA×sucBAB
40 39 oveq2d AOnBOnABGFPredxy|xOn×OnyOn×On1stxE1sty1stx=1sty2ndxE2ndy2ndx=2ndyxyOn×OnAB=ABGFsucA×sucBAB
41 24 40 eqtrd AOnBOnAFB=ABGFsucA×sucBAB