Metamath Proof Explorer


Theorem onasuc

Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Note that this version of oasuc does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion onasuc AOnBωA+𝑜sucB=sucA+𝑜B

Proof

Step Hyp Ref Expression
1 frsuc BωrecxVsucxAωsucB=xVsucxrecxVsucxAωB
2 1 adantl AOnBωrecxVsucxAωsucB=xVsucxrecxVsucxAωB
3 peano2 BωsucBω
4 3 adantl AOnBωsucBω
5 4 fvresd AOnBωrecxVsucxAωsucB=recxVsucxAsucB
6 fvres BωrecxVsucxAωB=recxVsucxAB
7 6 adantl AOnBωrecxVsucxAωB=recxVsucxAB
8 7 fveq2d AOnBωxVsucxrecxVsucxAωB=xVsucxrecxVsucxAB
9 2 5 8 3eqtr3d AOnBωrecxVsucxAsucB=xVsucxrecxVsucxAB
10 nnon BωBOn
11 onsuc BOnsucBOn
12 10 11 syl BωsucBOn
13 oav AOnsucBOnA+𝑜sucB=recxVsucxAsucB
14 12 13 sylan2 AOnBωA+𝑜sucB=recxVsucxAsucB
15 ovex A+𝑜BV
16 suceq x=A+𝑜Bsucx=sucA+𝑜B
17 eqid xVsucx=xVsucx
18 15 sucex sucA+𝑜BV
19 16 17 18 fvmpt A+𝑜BVxVsucxA+𝑜B=sucA+𝑜B
20 15 19 ax-mp xVsucxA+𝑜B=sucA+𝑜B
21 oav AOnBOnA+𝑜B=recxVsucxAB
22 10 21 sylan2 AOnBωA+𝑜B=recxVsucxAB
23 22 fveq2d AOnBωxVsucxA+𝑜B=xVsucxrecxVsucxAB
24 20 23 eqtr3id AOnBωsucA+𝑜B=xVsucxrecxVsucxAB
25 9 14 24 3eqtr4d AOnBωA+𝑜sucB=sucA+𝑜B