Metamath Proof Explorer


Theorem oncard

Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of TakeutiZaring p. 85. (Contributed by Mario Carneiro, 7-Jan-2013)

Ref Expression
Assertion oncard xA=cardxA=cardA

Proof

Step Hyp Ref Expression
1 id A=cardxA=cardx
2 fveq2 A=cardxcardA=cardcardx
3 cardidm cardcardx=cardx
4 2 3 eqtrdi A=cardxcardA=cardx
5 1 4 eqtr4d A=cardxA=cardA
6 5 exlimiv xA=cardxA=cardA
7 fvex cardAV
8 eleq1 A=cardAAVcardAV
9 7 8 mpbiri A=cardAAV
10 fveq2 x=Acardx=cardA
11 10 eqeq2d x=AA=cardxA=cardA
12 11 spcegv AVA=cardAxA=cardx
13 9 12 mpcom A=cardAxA=cardx
14 6 13 impbii xA=cardxA=cardA