Metamath Proof Explorer


Theorem oneptri

Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneptri AOnBOnAEBBEAA=B

Proof

Step Hyp Ref Expression
1 epsoon EOrOn
2 sotrieq EOrOnAOnBOnA=B¬AEBBEA
3 1 2 mpan AOnBOnA=B¬AEBBEA
4 xoror AEBBEAA=BAEBBEAA=B
5 xorcom AEBBEAA=BA=BAEBBEA
6 df-xor A=BAEBBEA¬A=BAEBBEA
7 xor3 ¬A=BAEBBEAA=B¬AEBBEA
8 5 6 7 3bitrri A=B¬AEBBEAAEBBEAA=B
9 df-3or AEBBEAA=BAEBBEAA=B
10 4 8 9 3imtr4i A=B¬AEBBEAAEBBEAA=B
11 3 10 syl AOnBOnAEBBEAA=B