Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onexgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsuc | |
|
2 | sucidg | |
|
3 | eleq2 | |
|
4 | 3 | rspcev | |
5 | 1 2 4 | syl2anc | |