Metamath Proof Explorer


Theorem onexgt

Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025)

Ref Expression
Assertion onexgt AOnxOnAx

Proof

Step Hyp Ref Expression
1 onsuc AOnsucAOn
2 sucidg AOnAsucA
3 eleq2 x=sucAAxAsucA
4 3 rspcev sucAOnAsucAxOnAx
5 1 2 4 syl2anc AOnxOnAx