Metamath Proof Explorer


Theorem onsupcl2

Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupcl2 A𝒫OnAOn

Proof

Step Hyp Ref Expression
1 elpwb A𝒫OnAVAOn
2 ssonuni AVAOnAOn
3 2 imp AVAOnAOn
4 1 3 sylbi A𝒫OnAOn