Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
op0cl
Next ⟩
op1cl
Metamath Proof Explorer
Ascii
Unicode
Theorem
op0cl
Description:
An orthoposet has a zero element. (
h0elch
analog.)
(Contributed by
NM
, 12-Oct-2011)
Ref
Expression
Hypotheses
op0cl.b
⊢
B
=
Base
K
op0cl.z
⊢
0
˙
=
0.
⁡
K
Assertion
op0cl
⊢
K
∈
OP
→
0
˙
∈
B
Proof
Step
Hyp
Ref
Expression
1
op0cl.b
⊢
B
=
Base
K
2
op0cl.z
⊢
0
˙
=
0.
⁡
K
3
eqid
⊢
glb
⁡
K
=
glb
⁡
K
4
1
3
2
p0val
⊢
K
∈
OP
→
0
˙
=
glb
⁡
K
⁡
B
5
id
⊢
K
∈
OP
→
K
∈
OP
6
eqid
⊢
lub
⁡
K
=
lub
⁡
K
7
1
6
3
op01dm
⊢
K
∈
OP
→
B
∈
dom
⁡
lub
⁡
K
∧
B
∈
dom
⁡
glb
⁡
K
8
7
simprd
⊢
K
∈
OP
→
B
∈
dom
⁡
glb
⁡
K
9
1
3
5
8
glbcl
⊢
K
∈
OP
→
glb
⁡
K
⁡
B
∈
B
10
4
9
eqeltrd
⊢
K
∈
OP
→
0
˙
∈
B