Metamath Proof Explorer


Theorem op0cl

Description: An orthoposet has a zero element. ( h0elch analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses op0cl.b B = Base K
op0cl.z 0 ˙ = 0. K
Assertion op0cl K OP 0 ˙ B

Proof

Step Hyp Ref Expression
1 op0cl.b B = Base K
2 op0cl.z 0 ˙ = 0. K
3 eqid glb K = glb K
4 1 3 2 p0val K OP 0 ˙ = glb K B
5 id K OP K OP
6 eqid lub K = lub K
7 1 6 3 op01dm K OP B dom lub K B dom glb K
8 7 simprd K OP B dom glb K
9 1 3 5 8 glbcl K OP glb K B B
10 4 9 eqeltrd K OP 0 ˙ B