Metamath Proof Explorer


Theorem op0cl

Description: An orthoposet has a zero element. ( h0elch analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses op0cl.b B=BaseK
op0cl.z 0˙=0.K
Assertion op0cl KOP0˙B

Proof

Step Hyp Ref Expression
1 op0cl.b B=BaseK
2 op0cl.z 0˙=0.K
3 eqid glbK=glbK
4 1 3 2 p0val KOP0˙=glbKB
5 id KOPKOP
6 eqid lubK=lubK
7 1 6 3 op01dm KOPBdomlubKBdomglbK
8 7 simprd KOPBdomglbK
9 1 3 5 8 glbcl KOPglbKBB
10 4 9 eqeltrd KOP0˙B