Metamath Proof Explorer


Theorem opabdm

Description: Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017)

Ref Expression
Assertion opabdm R=xy|φdomR=x|yφ

Proof

Step Hyp Ref Expression
1 df-dm domR=x|yxRy
2 nfopab1 _xxy|φ
3 2 nfeq2 xR=xy|φ
4 nfopab2 _yxy|φ
5 4 nfeq2 yR=xy|φ
6 df-br xRyxyR
7 eleq2 R=xy|φxyRxyxy|φ
8 opabidw xyxy|φφ
9 7 8 bitrdi R=xy|φxyRφ
10 6 9 bitrid R=xy|φxRyφ
11 5 10 exbid R=xy|φyxRyyφ
12 3 11 abbid R=xy|φx|yxRy=x|yφ
13 1 12 eqtrid R=xy|φdomR=x|yφ