Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opabresexd.x | ||
opabresexd.y | |||
opabresexd.a | |||
opabresexd.b | |||
opabresexd.c | |||
Assertion | opabresexd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresexd.x | ||
2 | opabresexd.y | ||
3 | opabresexd.a | ||
4 | opabresexd.b | ||
5 | opabresexd.c | ||
6 | mapex | ||
7 | 3 4 6 | syl2anc | |
8 | 1 2 7 5 | opabresex0d |