Metamath Proof Explorer


Theorem opcon1b

Description: Orthocomplement contraposition law. ( negcon1 analog.) (Contributed by NM, 24-Jan-2012)

Ref Expression
Hypotheses opoccl.b B=BaseK
opoccl.o ˙=ocK
Assertion opcon1b KOPXBYB˙X=Y˙Y=X

Proof

Step Hyp Ref Expression
1 opoccl.b B=BaseK
2 opoccl.o ˙=ocK
3 1 2 opcon2b KOPXBYBX=˙YY=˙X
4 eqcom ˙Y=XX=˙Y
5 eqcom ˙X=YY=˙X
6 3 4 5 3bitr4g KOPXBYB˙Y=X˙X=Y
7 6 bicomd KOPXBYB˙X=Y˙Y=X