Metamath Proof Explorer


Theorem opcon2b

Description: Orthocomplement contraposition law. ( negcon2 analog.) (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypotheses opoccl.b B=BaseK
opoccl.o ˙=ocK
Assertion opcon2b KOPXBYBX=˙YY=˙X

Proof

Step Hyp Ref Expression
1 opoccl.b B=BaseK
2 opoccl.o ˙=ocK
3 1 2 opoccl KOPYB˙YB
4 3 3adant2 KOPXBYB˙YB
5 1 2 opcon3b KOPXB˙YBX=˙Y˙˙Y=˙X
6 4 5 syld3an3 KOPXBYBX=˙Y˙˙Y=˙X
7 1 2 opococ KOPYB˙˙Y=Y
8 7 3adant2 KOPXBYB˙˙Y=Y
9 8 eqeq1d KOPXBYB˙˙Y=˙XY=˙X
10 6 9 bitrd KOPXBYBX=˙YY=˙X