Metamath Proof Explorer


Theorem opcon3b

Description: Contraposition law for orthoposets. ( chcon3i analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses opoccl.b B=BaseK
opoccl.o ˙=ocK
Assertion opcon3b KOPXBYBX=Y˙Y=˙X

Proof

Step Hyp Ref Expression
1 opoccl.b B=BaseK
2 opoccl.o ˙=ocK
3 fveq2 Y=X˙Y=˙X
4 3 eqcoms X=Y˙Y=˙X
5 fveq2 ˙X=˙Y˙˙X=˙˙Y
6 5 eqcoms ˙Y=˙X˙˙X=˙˙Y
7 1 2 opococ KOPXB˙˙X=X
8 7 3adant3 KOPXBYB˙˙X=X
9 1 2 opococ KOPYB˙˙Y=Y
10 9 3adant2 KOPXBYB˙˙Y=Y
11 8 10 eqeq12d KOPXBYB˙˙X=˙˙YX=Y
12 6 11 imbitrid KOPXBYB˙Y=˙XX=Y
13 4 12 impbid2 KOPXBYBX=Y˙Y=˙X