Metamath Proof Explorer


Theorem opeldifid

Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020)

Ref Expression
Assertion opeldifid RelAXYAIXYAXY

Proof

Step Hyp Ref Expression
1 reldif RelARelAI
2 brrelex2 RelAIXAIYYV
3 1 2 sylan RelAXAIYYV
4 brrelex2 RelAXAYYV
5 4 adantrr RelAXAYXYYV
6 brdif XAIYXAY¬XIY
7 ideqg YVXIYX=Y
8 7 necon3bbid YV¬XIYXY
9 8 anbi2d YVXAY¬XIYXAYXY
10 6 9 syl5bb YVXAIYXAYXY
11 3 5 10 pm5.21nd RelAXAIYXAYXY
12 df-br XAIYXYAI
13 df-br XAYXYA
14 13 anbi1i XAYXYXYAXY
15 11 12 14 3bitr3g RelAXYAIXYAXY