Metamath Proof Explorer


Theorem opeldm

Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995)

Ref Expression
Hypotheses opeldm.1 AV
opeldm.2 BV
Assertion opeldm ABCAdomC

Proof

Step Hyp Ref Expression
1 opeldm.1 AV
2 opeldm.2 BV
3 opeq2 y=BAy=AB
4 3 eleq1d y=BAyCABC
5 2 4 spcev ABCyAyC
6 1 eldm2 AdomCyAyC
7 5 6 sylibr ABCAdomC