Metamath Proof Explorer


Theorem opelres

Description: Ordered pair elementhood in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995) (Revised by BJ, 18-Feb-2022) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)

Ref Expression
Assertion opelres CVBCRABABCR

Proof

Step Hyp Ref Expression
1 df-res RA=RA×V
2 1 elin2 BCRABCRBCA×V
3 opelxp BCA×VBACV
4 elex CVCV
5 4 biantrud CVBABACV
6 3 5 bitr4id CVBCA×VBA
7 6 anbi1cd CVBCRBCA×VBABCR
8 2 7 bitrid CVBCRABABCR